4.7 Article

Cell contractility arising from topography and shear flow determines human mesenchymal stem cell fate

期刊

SCIENTIFIC REPORTS
卷 6, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep20415

关键词

-

资金

  1. National Research Foundation Singapore under Research Center of Excellence programme
  2. Mechanobiology Institute Scholarship - National Research Foundation Singapore and Singapore Ministry of Education

向作者/读者索取更多资源

Extracellular matrix (ECM) of the human Mesenchymal Stem Cells (MSCs) influences intracellular tension and is known to regulate stem cell fate. However, little is known about the physiological conditions in the bone marrow, where external forces such as fluid shear stress, apart from the physical characteristics of the ECM, influence stem cell response. Here, we hypothesize that substrate topography and fluid shear stress alter the cellular contractile forces, influence the genetic expression of the stem cells and hence alter their lineage. When fluid shear stress was applied, human MSCs with higher contractility (seeded on 1 mu m wells) underwent osteogenesis, whereas those with lower contractility (seeded on 2 mu m gratings) remained multipotent. Compared to human MSCs seeded on gratings, those seeded on wells exhibited altered alignment and an increase in the area and number of focal adhesions. When actomyosin contractility was inhibited, human MSCs did not exhibit differentiation, regardless of the topographical feature they were being cultured on. We conclude that the stresses generated by the applied fluid flow impinge on cell contractility to drive the stem cell differentiation via the contractility of the stem cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据