4.7 Article

On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better

期刊

SCIENTIFIC REPORTS
卷 3, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep02079

关键词

-

资金

  1. Cancer Prevention Research Institute of Texas [CPRIT RP110262]
  2. U.S. National Institutes of Health [U54CA143837, U54CA151668]
  3. Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357]
  4. World Class University Program through the National Research Foundation of Korea (NRF)
  5. Ministry of Education, Science and Technology [R33-10079]
  6. [CMMI-0856492]
  7. [CMMI-0856333]

向作者/读者索取更多资源

Although most nanofabrication techniques can control nano/micro particle (NMP) size over a wide range, the majority of NMPs for biomedical applications exhibits a diameter of similar to 100 nm. Here, the vascular distribution of spherical particles, from 10 to 1,000 nm in diameter, is studied using intravital microscopy and computational modeling. Small NMPs (<= 100 nm) are observed to move with Red Blood Cells (RBCs), presenting an uniform radial distribution and limited near-wall accumulation. Larger NMPs tend to preferentially accumulate next to the vessel walls, in a size-dependent manner (similar to 70% for 1,000 nm NMPs). RBC-NMP geometrical interference only is responsible for this behavior. In a capillary flow, the effective radial dispersion coefficient of 1,000 nm particles is similar to 3-fold larger than Brownian diffusion. This suggests that sub-micron particles could deposit within diseased vascular districts more efficiently than conventional nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据