4.7 Article

Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes

期刊

SCIENTIFIC REPORTS
卷 2, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep00955

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada [402421-2011]
  2. Canada Foundation for Innovation [28276]
  3. New Brunswick Innovation Foundation [RIF2012-006]

向作者/读者索取更多资源

Studies of photosynthetic eukaryotes have revealed that the evolution of plastids from cyanobacteria involved the recruitment of non-cyanobacterial proteins. Our phylogenetic survey of >100 Arabidopsis nuclear-encoded plastid enzymes involved in amino acid biosynthesis identified only 21 unambiguous cyanobacterial-derived proteins. Some of the several non-cyanobacterial plastid enzymes have a shared phylogenetic origin in the three Plantae lineages. We hypothesize that during the evolution of plastids some enzymes encoded in the host nuclear genome were mistargeted into the plastid. Then, the activity of those foreign enzymes was sustained by both the plastid metabolites and interactions with the native cyanobacterial enzymes. Some of the novel enzymatic activities were favored by selective compartmentation of additional complementary enzymes. The mosaic phylogenetic composition of the plastid amino acid biosynthetic pathways and the reduced number of plastid-encoded proteins of non-cyanobacterial origin suggest that enzyme recruitment underlies the recompartmentation of metabolic routes during the evolution of plastids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据