3.8 Article

Photothermal ablation therapy for cancer based on metal nanostructures

期刊

SCIENCE IN CHINA SERIES B-CHEMISTRY
卷 52, 期 10, 页码 1559-1575

出版社

SCIENCE PRESS
DOI: 10.1007/s11426-009-0247-0

关键词

-

资金

  1. US NSF
  2. US DoD
  3. NASA UARC

向作者/读者索取更多资源

Besides conventional surgery, radiation therapy, and chemotherapy, which all tend to have side-effects and damage normal tissues, new medical strategies, such as photothermal sensitization and photothermal ablation therapy (PTA) with near-IR laser light, have been explored for treating cancer. Much of the current excitement surrounding nanoscience is directly connected to the promise of new nanotechnology for cancer diagnosis and therapy. The basic principle behind PTA is that heat generated from light can be used to destroy cancer cells. Strong optical absorption and high efficiency of photothermal conversion at the cancer sites are critical to the success of PTA. Because of their unique optical properties, e.g., strong surface plasmon resonance (SPR) absorption, noble metal nanomaterials, such as gold and silver, have been found to significantly enhance photothermal conversion for PTA applications. Substantial effort has been made to develop metal nanostructures with optimal structural and photothermal properties. Ideal metal nanostructures should have strong and tunable SPR, be easy to deliver, have low toxicity, and be convenient for bioconjugation for actively targeting specific cancer cells. This review would highlight some gold nanostructures with various shapes and properties, including nanoparticles (NPs), nanorods (NRs), nanoshells, nanocages, and hollow nanospheres, which have been studied for PTA applications. Among these structures, hollow gold nanospheres (HGNs) exhibit arguably the best combined properties because of their small size (30-50 nm), spherical shape, and strong, narrow, and tunable SPR absorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据