4.6 Article

Bifunctional TiO2/Ag3PO4/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria

期刊

RSC ADVANCES
卷 4, 期 36, 页码 18627-18636

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra01559b

关键词

-

资金

  1. National Natural Science Foundation of China [51102116, 11102075, 51302112]
  2. Natural Science Foundation of Jiangsu [BK2011480, BK2011534]
  3. Open Fund of Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education [INMD-2014M02]

向作者/读者索取更多资源

In this work, bifunctional TiO2/Ag3PO4/graphene (GR) composites have been prepared via the combination of ion-exchange method and hydrothermal approach, and the fabrication of pizza-like three-phase TiO2/Ag3PO4/GR composites has been achieved through the electrostatic-driven assembly of positively-charged Ag+ on negatively-charged graphene oxide (GO) sheets, followed by the nucleation & controlled growth of Ag3PO4 and the deposition of Degussa P25 on the GO surface. Consequently, the hydrothermal treatment leads to the generation of TiO2/Ag3PO4/GR composites with well-defined structures. The as-prepared composites exhibited highly efficient visible light photocatalytic activity toward organic dye molecule degradation and showed excellent bactericidal performance. This is the first report on the production of bifunctional three-phase metal oxide-Ag3PO4-GR composite materials with improved photocatalytic and antibacterial properties. The improved photocatalytic activity is attributed to the effective separation of photoexcited electron-hole pairs and fast charge transfer between components in the composite, while its excellent bactericidal performance is believed to come from intrinsic bacterial inactivation of Ag3PO4 and photo-induced antibacterial activity of active oxygen-containing radicals generated in the irradiated system. The proper molar ratio of Ag3PO4/TiO2 and the added amount of GO in the precursor have been considered to play crucial roles in the formation of bifunctional composites with promising properties. The TiO2/Ag3PO4/GR composite significantly decreases the percentage of expensive Ag-containing material while it reveals better photocatalytic and antibacterial performance than Ag3PO4, providing new insights into the low-cost, large-scale production of Ag3PO4-based function materials for practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据