4.2 Article

Two crystal structures of the FK506-binding domain of Plasmodium falciparum FKBP35 in complex with rapamycin at high resolution

期刊

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S1399004715006239

关键词

Plasmodium falciparum; FK506-binding domain; PfFKBP35; rapamycin; antimalarial drug

资金

  1. Irish Research Council (UCD Bioinformatics and System Biology PhD program)
  2. University of Montpellier
  3. CNRS
  4. INSERM
  5. French Infrastructure for Integrated Structural Biology (FRISBI) [ANR-10-INSB-05-01]

向作者/读者索取更多资源

Antimalarial chemotherapy continues to be challenging in view of the emergence of drug resistance, especially artemisinin resistance in Southeast Asia. It is critical that novel antimalarial drugs are identified that inhibit new targets with unexplored mechanisms of action. It has been demonstrated that the immunosuppressive drug rapamycin, which is currently in clinical use to prevent organ-transplant rejection, has antimalarial effects. The Plasmodium falciparum target protein is PfFKBP35, a unique immunophilin FK506-binding protein (FKBP). This protein family binds rapamycin, FK506 and other immunosuppressive and non-immunosuppressive macrolactones. Here, two crystallographic structures of rapamycin in complex with the FK506-binding domain of PfFKBP35 at high resolution, in both its oxidized and reduced forms, are reported. In comparison with the human FKBP12-rapamycin complex reported previously, the structures reveal differences in the beta 4-beta 6 segment that lines the rapamycin binding site. Structural differences between the Plasmodium protein and human hFKBP12 include the replacement of Cys106 and Ser109 by His87 and Ile90, respectively. The proximity of Cys106 to the bound rapamycin molecule (4-5 angstrom) suggests possible routes for the rational design of analogues of rapamycin with specific antiparasitic activity. Comparison of the structures with the PfFKBD-FK506 complex shows that both drugs interact with the same binding-site residues. These two new structures highlight the structural differences and the specific interactions that must be kept in consideration for the rational design of rapamycin analogues with antimalarial activity that specifically bind to PfFKBP35 without immunosuppressive effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据