4.6 Article

Visible light-driven g-C3N4/m-Ag2Mo2O7 composite photocatalysts: synthesis, enhanced activity and photocatalytic mechanism

期刊

RSC ADVANCES
卷 4, 期 92, 页码 51008-51015

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra09224d

关键词

-

资金

  1. China Scholarship Council (CSC)
  2. Olle Eriksson Foundation Scholarship at KTH

向作者/读者索取更多资源

The g-C3N4/m-Ag2Mo2O7 composite photocatalysts with well-aligned band structures are successfully fabricated by a simple two-step method with different mass contents of m-Ag2Mo2O7. The as-prepared samples are evaluated as photocatalysts toward rhodamine B (RhB) degradation in aqueous solution under visible light irradiation (lambda > 420 nm). The results demonstrate that the photocatalytic activities of the composites are strongly influenced by the weight ratio of g-C3N4 to m-Ag2Mo2O7. When it is 6 : 1, the composite exhibits the highest photocatalytic efficiency. More specifically, this value is as high as 3.4 and 6.1 times that of pure g-C3N4 and P25 respectively. In order to investigate the mechanism causing the enhanced photocatalytic degradation, the band structures are determined by UV-vis diffuse reflection spectroscopy and the Mott-Schottky technique. Moreover, the reactive radicals involved in the photocatalytic process are examined in detail via active species trapping (AST) experiments. The improved photocatalytic activities can be attributed to the efficient separation of the photo-induced charge carriers and the strong redox capacities benefit from the synergetic effect between g-C3N4 and m-Ag2Mo2O7.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据