4.6 Article

Optically-Triggered Nanoscale Memory Effect in a Hybrid Plasmonic-Phase Changing Nanostructure

期刊

ACS PHOTONICS
卷 2, 期 9, 页码 1306-1313

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsphotonics.5b00249

关键词

surface plasmons; metal nanoparticles; vanadium dioxides; plasmonic memory effect; phase transformation

资金

  1. Hong Kong Polytechnic University (1-ZVCG)
  2. United Kingdom Engineering and Physical Sciences Research Council
  3. Leverhulme Trust Foundation
  4. National Science Foundation [ECE-0801980, ARI-R2 DMR-0963361]
  5. European Regional Development Fund (CEITEC) [CZ.1.05/1.1.00/02.0068]
  6. EPSRC [EP/H000917/2] Funding Source: UKRI
  7. Engineering and Physical Sciences Research Council [EP/H000917/2] Funding Source: researchfish

向作者/读者索取更多资源

Nanoscale devices, such as all-optical modulators and electro-optical transducers, can be implemented in heterostructures that integrate plasmonic nanostructures with functional active materials. Here we demonstrate all-optical control of a nanoscale memory effect in such a heterostructure by coupling the localized surface plasmon resonance (LSPR) of gold nanodisk arrays to a phase-changing material (PCM), vanadium dioxide (VO2). By latching the VO2 in a distinct correlated metallic state during the insulator-to-metal transition (IMT), while concurrently exciting the hybrid nanostructure with one or more ultraviolet optical pulses, the entire phase space of this correlated state can be accessed optically to modulate the plasmon response. We find that the LSPR modulation depends strongly but linearly on the initial latched state, suggesting that the memory effect encoded in the plasmon resonance wavelength is linked to the strongly correlated electron states of the VO2. The continuous, linear variation of the electronic and optical properties of these model heterostructures opens the way to multiple design strategies for hybrid devices with novel optoelectronic functionalities, which can be controlled by an applied electric or optical field, strain, injected charge, or temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据