4.6 Article

Assessment of effects of multi drug resistance on dielectric properties of K562 leukemic cells using electrorotation

期刊

RSC ADVANCES
卷 4, 期 85, 页码 44879-44887

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra04873c

关键词

-

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [111E194]

向作者/读者索取更多资源

In this study, dielectric characterization of multidrug resistant (MDR) K562 human leukemia cells was carried out using a MEMS based electrorotation (ER) device with 3D electrodes. P-glycoprotein (P-gp) dependent MDR causes variation in cell dielectric properties (cell interior conductivity (sigma(i)), membrane capacitance (C-m) and total effective membrane conductance (G(m)*)) due to overexpression of P-gp, which modulates the activity of membrane-bound Cl- channels. Different cell populations resistant to varying levels of doxorubicin (DOX, 0.1-0.5 mu M) and imatinib (IMA, 0.2-0.5 mu M) were studied to reveal the relationship between cell dielectric properties and the degree of drug resistance. ER characterization results proved considerable changes in cell membrane and interior dielectric properties as the resistance level to chemotherapeutic drugs changes. The membrane dielectric properties of the cells increase significantly at low (0.1-0.2 mu M) drug resistance levels (K562/IMA-0.2: C-m = 15.63 +/- 3.02 mF m(-2) and G(m)* = 2953 +/- 82 S m(-2), and K562/DOX-0.1: C-m = 12.29 +/- 2.15 mF m(-2) and G(m)* = 1810 +/- 14 S m(-2)), compared to the sensitive ones (C-m = 8.93 +/- 1.43 mF m(-2) and G(m)* = 336 +/- 73 S m(-2)). However, they follow a decreasing trend as the drug resistance level increases (0.3-0.5 mu M). The membrane capacitance and effective conductance for IMA resistant K562 cells falls to 8.10 +/- 1.69 mF m(-2) and 113 +/- 18 S m(-2) in 0.5 mu M resistant cells, respectively. Similarly, the membrane capacitance and effective conductance of DOX resistant cells falls to 8.70 +/- 1.71 mF m(-2) and 1377 +/- 22 S m(-2) in 0.5 mu M resistant cells, respectively. However, no direct relationship could be observed between increased drug resistance and cell interior conductivity, which showed an oscillating behavior. Results prove that the degree of drug resistance significantly affects the dielectric properties of K562 cells, although they possess a similar size and morphology. Variations in cell dielectric properties result in differences in DEP crossover frequencies, which could be utilized in the detection and separation of MDR using dielectrophoretic based devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据