4.6 Article

Environmentally benign enhanced hydrogen production via lethal H2S under natural sunlight using hierarchical nanostructured bismuth sulfide

期刊

RSC ADVANCES
卷 4, 期 90, 页码 49295-49302

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra07143c

关键词

-

资金

  1. Department of Electronics and Information Technology (DeitY), New Delhi

向作者/读者索取更多资源

Nanorods and hierarchical nanostructures (dandelion flowers) of bismuth sulfide (Bi2S3) were synthesized using a solvothermal method. The effects of solvents such as water and ethylene glycol on the morphology and size of the Bi2S3 nanostructures were studied. A structural study showed an orthorhombic phase of Bi2S3. We observed nanorods 30-50 nm in diameter and dandelion flowers assembled with these nanorods. A formation mechanism for the hierarchical nanostructures of Bi2S3 is proposed. Based on the tuneable band gap of these nanostructures in the visible and near-IR regions, we demonstrated the photocatalytic production of hydrogen from H2S under normal sunlight. Abundantly available toxic H2S was used to produce hydrogen under normal sunlight conditions. We observed an excellent hydrogen production of 8.88 mmol g(-1) h(-1) under sunlight (on a sunny day between 11.30 am and 2.30 pm) for the Bi2S3 flowers and 7.08 mmol g(-1) h(-1) for the nanorods. The hierarchical nanostructures suppress charge carrier recombination as a result of defects, which is ultimately responsible for the higher activity. The evolution of the hydrogen obtained is fairly stable when the catalyst is used repeatedly. The evolution of hydrogen via water splitting was observed to be lower than that via H2S splitting. Bi2S3 was observed to be a good eco-friendly photocatalyst active under natural sunlight. The photo-response study showed that the Bi2S3 microstructures are good candidates for applications in highly sensitive photo-detectors and photo-electronic switches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据