4.6 Article

Hollow periodic mesoporous organosilicas for highly efficient HIFU-based synergistic therapy

期刊

RSC ADVANCES
卷 4, 期 34, 页码 17950-17958

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ra47654e

关键词

-

资金

  1. National Nature Science Foundation of China [51302293, 81371577]
  2. Natural Science Foundation of Shanghai [13ZR1463500]
  3. Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures [SKL201203]

向作者/读者索取更多资源

Nano-biotechnology provides a promising therapeutic strategy for the development of novel cancer therapeutic modalities. In this work, molecularly organic-inorganic hybrid hollow periodic mesoporous organosilicas (HPMOs) were elaborately designed and fabricated by a silica-etching strategy for concurrent high intensity focused ultrasound (HIFU)-based synergistic therapy and combined HIFU-triggered chemotherapy. Due to the unique hollow nanostructures and well-defined spherical morphology, HPMOs themselves have been demonstrated as an efficient synergistic agent to enhance the HIFU ablation efficiency. The well-defined mesoporous shell and large hollow interior can function as the reservoirs for anticancer agents, and the drug (doxorubicin)-releasing exhibits the intelligent on demand profiles under HIFU irradiation due to the specific framework-induced pi-pi supramolecular stacking between benzene group-bridged framework and doxorubicin molecules. Combined with HIFU ablation and chemotherapy, HPMOs-based intelligent drug delivery nanosystems have demonstrated in vivo that anticancer drug-loaded HPMOs can significantly enhance the HIFU therapeutic outcomes due to the combined effects of concurrent enhancement of HIFU ablation and HIFU-triggered chemotherapy. This report gives the first evidence that mesoporous material-based drug delivery nanosystems (e. g., HPMOs) can improve the efficiency of focused ultrasound for cancer surgery, which can be further extended for the development of novel HIFU-based therapeutic modalities for more efficient cancer therapy with mitigated side-effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据