4.6 Article

Shape tailored Ni3(NO3)2(OH)4 nano-flakes simulating 3-D bouquet-like structures for supercapacitors: exploring the effect of electrolytes on stability and performance

期刊

RSC ADVANCES
卷 4, 期 74, 页码 39378-39385

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra05054a

关键词

-

资金

  1. Department of Science and Technology (DST), Government of India

向作者/读者索取更多资源

The present study demonstrates a novel, low temperature synthetic approach by which 3-D bouquets of nickel hydroxide nitrate were processed into high surface area electrodes for supercapacitor applications. The synthesized micro-bouquets comprised randomly arrayed microporous nanoflakes (pore size: 2-6 nm) and exhibited a surface area of 150 m(2) g(-1). Morphological evolution studies were performed to elucidate how surface morphology of these electrode materials affect redox reactions and their ultimate performance as a supercapacitor. The electrodes were tested in three different electrolytes, namely lithium hydroxide, potassium hydroxide and sodium hydroxide. From the detailed electrochemical analysis, an intrinsic correlation between the capacitance, internal resistance and the surface morphology was deduced and explained on the basis of relative contributions from the faradaic properties in different electrolytes. Depending on the surface morphology and electrolyte incorporated, these nano/micro-hybrid electrodes exhibited specific mass capacitance value of as high as 1380 +/- 38 F g(-1). Inductively coupled plasma-atomic emission spectroscopy was used to determine the electrode dissolution in the given electrolyte and the findings were co-related with the cycling stability. By employing this low cost electrode design, high stability (>5000 cycles with no fading) was achieved in lithium hydroxide electrolyte. Furthermore, a working model supercapacitor in a coin cell form is also shown to exhibit peak power and energy density of 3 kW kg(-1) and 800 mW h kg(-1), respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据