4.6 Article

Reduced graphene oxide induced phase miscibility in polystyrene-poly(vinyl methyl ether) blends

期刊

RSC ADVANCES
卷 4, 期 24, 页码 12376-12387

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ra46902f

关键词

-

资金

  1. Nano - Mission of the Department of Science & Technology (DST), India
  2. DST, India [DSTO 1096]

向作者/读者索取更多资源

Graphene oxide and reduced graphene oxide (r-GO) were synthesized by wet chemistry and the effect of r-GO in PS-PVME blends was investigated here with respect to phase miscibility, intermolecular cooperativity in the glass transition region and concentration fluctuation variance by shear rheology and dielectric spectroscopy. The spinodal decomposition temperature (T-s) and correlation length were evaluated from isochronal temperature scans in shear rheology. The r-GO is shown to induce miscibility in the blends, which may lead to increased local heterogeneity in the blends, though the length of cooperatively re-arranged regions (xi) at T-g is more or less unaltered. The evolution of the phase morphology as a function of temperature was assessed using polarized optical microscopy (POM). In the case of the 60/40 PS-PVME blends with 0.25 wt% r-GO, apart from significant refinement in the morphology, retention of the interconnected ligaments of PVME was observed, even in the late stages of phase separation suggesting that the coarsening of the phase morphology has been slowed down in the presence of r-GO. This phenomenon was also supported by AFM. Surface enrichment of PVME, owing to its lower surface tension, in the demixed samples was supported by XPS scans. The interconnected network of PVME has resulted in significantly higher permittivity in the bi-phasic blends, although the concentration of r-GO is below the percolation threshold.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据