4.6 Article

Novel pH-responsive nanoplasmonic sensor: controlling polymer structural change to modulate localized surface plasmon resonance response

期刊

RSC ADVANCES
卷 4, 期 30, 页码 15807-15815

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra00117f

关键词

-

资金

  1. IUPUI

向作者/读者索取更多资源

The detection of chemical or biological analytes in physiological media remains a great challenge and current methods suffer from low sensitivity, reproducibility, and require expensive instruments. Here we report the design of a simple, pH-responsive nanoplasmonic sensor utilizing polymer structural changes to induce localized surface plasmon resonance (LSPR) shifts. The sensors were fabricated by chemical attachment of poly(allylamine) onto similar to 28 nm gold nanoprisms bound to a silanized glass surface. The reversible change of polymer structure upon protonation and deprotonation of its amine groups alters the nanoprisms' LSPR properties. A spectral shift of the nanoprisms' dipole peak was observed because of changes in thickness of local dielectric environment, which are caused by shrinking and swelling of the pH-responsive polymer. The pH-induced shrinking and the swelling transition provided the opportunity to design ultrasensitive glucose sensors. The pH change from oxidation of beta-glucose by glucose oxidase, resulted in up to a 17 nm LSPR peak shift because of the 3.7 nm change in polymer thickness measured by in situ atomic force microscopy. The lowest concentration of glucose that can be repeatedly detected in bovine plasma with this sensor was 25 mu M. This nanoplasmonic sensor exhibited simplicity of operation and excellent reproducibility. The polymer-functionalized sensor provided a powerful avenue for simple, ultrasensitive, and cost effective detection of target analytes, which can be translated to clinical application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据