4.6 Review

Mesoporous carbon with uniquely combined electrochemical and mass transport characteristics for polymer electrolyte membrane fuel cells

期刊

RSC ADVANCES
卷 3, 期 1, 页码 16-24

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ra22279e

关键词

-

资金

  1. Research Grants Council of the Hong Kong Special Administrative Region, China [HKUST9/CRF/11G]

向作者/读者索取更多资源

The design of electrodes for polymer electrolyte membrane fuel cells (PEMFCs) is a delicate balance of electrochemical and mass transport issues. High performance fuel cell electrode materials require nanoarchitectures with established nanoscopic reaction zones and efficient molecular transport of gasor liquid-phase reactants and products to and from the electrochemical reaction zones. Mesoporous carbon (MC), with uniquely combined electrochemical and mass transport characteristics is an ideal electrode material for polymer electrolyte membrane fuel cells as its mesoscopic structures not only enables electrocatlysts to be highly dispersed, but also offers ideal pore morphologies that facilitate mass transport. Recently, a wide variety of applications of MCs in PEMFCs have been exploited. This article provides a review of these past efforts with an attempt to gain a better understanding of the role of MCs in PEMFCs. The contribution of MCs in the gas diffusion layer is addressed first and their roles in the catalyst layer are then discussed. The advantages and disadvantages, the acting mechanism to promote electrochemical and mass transport characteristics, and the strategies to improve present electrode materials are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据