4.6 Article

Au@PtAg core/shell nanorods: tailoring enzyme-like activities via alloying

期刊

RSC ADVANCES
卷 3, 期 17, 页码 6095-6105

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ra23215h

关键词

-

资金

  1. National Natural Science Foundation of China [21173056]
  2. National Key Basic Research Program of China [2012CB934001, 2011CB932802]
  3. FDA Nanotechnology CORES Program [FY11]

向作者/读者索取更多资源

Pt nanoparticles (NPs) have been reported to demonstrate four kinds of enzyme-like activity including superoxide dismutase (SOD), catalase, oxidase and peroxidase. Some of these activities interfere with each other. For instance, as antioxidant enzyme mimics, their SOD and catalase activities are very helpful in scavenging related reactive oxygen species (ROSs). However, their oxidase-like and/or peroxidase-like activities may simultaneously oxidize some natural antioxidants, thus compromising the final anti-oxidation efficacy. Fine tuning different enzyme-like activities is therefore very important to realize the optimization of their functions. In this paper, our effort is focused in this direction by tailoring the electronic structure of Pt NPs via alloying with Ag. All four enzyme-like activities are found to be weakened by an increased Ag percentage in the alloy, as witnessed by decreased values of K-cat. The variation in the electronic structure also changes the substrate affinity. Introducing silver into Pt weakens the affinity for H2O2, which affects the limit of detection (LOD) for H2O2 and products with H2O2 involved. In contrast to Fe3O4 MNPs, for peroxidase-like activity, hydroxyl radicals are not involved in the oxidation of chromogenic substrates for the alloy nanostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据