4.6 Article

Graphene-multiwalled carbon nanotube-based nanofluids for improved heat dissipation

期刊

RSC ADVANCES
卷 3, 期 13, 页码 4199-4206

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ra22653k

关键词

-

资金

  1. Indian Institute of Technology Madras, India

向作者/读者索取更多资源

A solution-free green method using focused solar electromagnetic radiation is used to synthesize graphene and graphene-multiwalled carbon nanotube (MWNT) composite. Stable nanofluids are prepared by dispersing the nanomaterials in polar base fluids. Thermal conductivity of the nanofluids improves with graphene-MWNT nanocomposites as additives, which could be due to prevention of restacking of graphene sheets by MWNT along with a synergistic effect of intrinsic high thermal conductivity of graphene and MWNT. The advantage of the present synthesis method in particular to nanofluids application is that the presence of oxygen functional groups resulting from pre-functionalized MWNT rules out the need for functionalizing the hybrid composite again, thereby preserving the high thermal properties of graphene. Thermal conductivity enhancement of 9.2% and 10.5% is obtained with graphene and graphene-MWNT nanofluids in de-ionized water at room temperature for 0.04% volume fraction. The high thermal transport characteristics of graphene-MWNT composite nanofluids is ascribed to the high aspect ratio of MWNT and graphene, which in turn can form tightly bonded clusters and, by suppressing the interface resistance, can become excellent additives to attain high thermal conductivity. Further, an enhancement in heat-transfer coefficient of 193% at Reynolds number 2000 for 0.02% volume fraction of aqueous graphene-MWNT nanofluids suggests the potential application of the present hybrid material-based nanofluids in cooling circuits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据