4.6 Article

3D porous micro/nanostructured interconnected metal/metal oxide electrodes for high-rate lithium storage

期刊

RSC ADVANCES
卷 3, 期 2, 页码 432-437

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ra21733c

关键词

-

资金

  1. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology [2010QN08]

向作者/读者索取更多资源

In light of the micro/nanoporous structure concept and metal oxide-based anodes of lithium ion batteries (LIBs), a novel kind of three dimensional (3D) porous micro/nanostructured interconnected (PMNI) metal/metal oxide electrode was successfully fabricated via a facile H-2 gas bubble dynamic template route. Firstly, 3D porous Ni (and Cu) was electrodeposited on the stainless steel sheet by the drastic cathodic deposition, partially thermally oxidized at a low temperature in air, and finally formed 3D PMNI Ni/NiO and Cu/Cu2O. Directly, as anodes of LIBs, 3D PMNI Ni/NiO and Cu/Cu2O exhibit a high-rate capability of 675.9 and 312.8 mA h g(-1) at 20C rate, respectively. High-rate lithium storage properties may be ascribed to the fact that this kind of 3D PMNI metal/metal oxide electrode provides a stable 3D scaffold, highly conductive pathway and shorter ion diffusion length. Note that the H2 gas bubble dynamic template route in the present work is a low cost, facile one-step process of formation and elimination of the template, and offers flexibility in controllable thickness and pore diameters of 3D porous structures, assuring optimization to match the characteristic kinetics of other LIBs electrodes. The strategy may open up a new way to design and optimize 3D multifunctional architectured electrodes by using suitable micro and nano dimensional subcomponents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据