4.6 Article

Enhanced Li adsorption and diffusion in silicon nanosheets based on first principles calculations

期刊

RSC ADVANCES
卷 3, 期 13, 页码 4231-4236

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ra22740e

关键词

-

资金

  1. Institute of High Performance Computing of A*STAR of Singapore
  2. Nanyang Technological University
  3. Singapore International Graduate Award (SINGA)

向作者/读者索取更多资源

First-principles density functional theory calculations are employed to investigate novel ultrathin silicon nanosheets (SiNSs) for their potential application as the anode material for Li-ion batteries. We find that Li has a higher tendency to bind on the surface of SiNS rather than penetrating through inside. The binding energies of Li show a strong dependence on the thickness of the nanosheets. The results suggest that insertion/deinsertion of Li can be controlled by using nanosheets of different thickness. More importantly, we show that there is a large increase of diffusivity in Si nanosheets as compared with the bulk case. In addition, Li diffusion shows strong dependence on the chemical functionalization of SiNSs, in which the diffusion rate is the fastest on H passivated surface as compared with the halogen passivated surfaces. Our results suggest that SiNSs are potential materials for Li-ion battery applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据