4.6 Article

Rapid synthesis of CuO nanoribbons and nanoflowers from the same reaction system, and a comparison of their supercapacitor performance

期刊

RSC ADVANCES
卷 3, 期 36, 页码 15719-15726

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ra42869a

关键词

-

资金

  1. key program of natural science foundation of Hubei Province [2012FFA080]

向作者/读者索取更多资源

One-dimensional CuO nanoribbons and three-dimensional CuO nanoflowers were synthesized via a facile, rapid, low-temperature, one-pot water bath method, in which the synthesis was performed in Cu(CH3COO)(2)/NaOH and aqueous/ethanol systems at 70 degrees C for 15 min. Control over the shape and dimensionality of the well-defined CuO single crystals was achieved simply by varying the order of addition of the reactive materials. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction were used to characterize the products. The formation mechanism in the in situ, rapid reaction was investigated. In Brunauer-Emmett-Teller and thermogravimetry measurements, the nanoribbons exhibited a higher specific surface area and higher adsorption capabilities than the nanoflowers. Using cyclic voltammetry, chronopotentiometry and EIS measurement for supercapacitance, it was shown that the nanoflower electrodes had better performance than the nanoribbon electrodes, however, the nanoribbon/C electrodes had better performance than the nanoflower/C electrodes at lower current density, but were worse at higher current density.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据