4.6 Article

Thermomechanical behavior of hydrogen-bond based supramolecular poly(ε-caprolactone)-silica nanocomposites

期刊

RSC ADVANCES
卷 3, 期 37, 页码 16686-16696

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ra42031k

关键词

-

向作者/读者索取更多资源

Supramolecular polymer nanocomposites represent an attractive alternative to traditional polymers for advanced materials that exhibit stimuli-responsive and self-healing properties. Here, we investigate the effects of specific hydrogen bonding interactions between surface functionalized silica nanoparticles and ureidopyrimidinone (UPy) based hydrogen bonded supramolecular poly(e-caprolactone) in a supramolecular polymer nanocomposite. The effect of varying levels of nanoparticle UPy surface functionalization is considered. In addition to the anticipated improvements in Young's modulus (similar to 50%) and storage modulus (similar to 2x) with silica loading, increases in strain at breaking point (similar to 25%) with silica loading were observed and attributed to particle-matrix hydrogen bonding. However, increasing the extent of UPy surface functionality at a constant nanoparticle loading level led to a marked decrease in storage modulus relative to nanocomposites prepared with as-received silica nanoparticles. TEM investigation of these nanocomposites show an increase in nanoparticle aggregation. Nanoparticle aggregation provides both an explanation for the observed storage modulus reduction and evidence of particle-particle interactions. These results give interesting insight into the competing effects of specific supramolecular interactions in supramolecular polymer nanocomposite materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据