4.6 Article

Two general designs for fluidic batteries in paper-based microfluidic devices that provide predictable and tunable sources of power for on-chip assays

期刊

RSC ADVANCES
卷 3, 期 19, 页码 6888-6895

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ra40701b

关键词

-

资金

  1. 3M
  2. Pennsylvania State University

向作者/读者索取更多资源

Microfluidic devices fabricated out of paper (and paper and tape) have emerged as promising platforms for conducting multiple diagnostic assays simultaneously in resource-limited settings. Certain types of assays in these devices, however, require a source of power to function. Lithium ion, nickel-cadmium, and other types of batteries have been used to power these devices, but these traditional batteries are too expensive and pose too much of a disposal hazard for diagnostic applications in resource-limited settings. To circumvent this problem, we previously designed a fluidic battery that is composed of multiple galvanic cells, incorporated directly into a multilayer paper-based microfluidic device. We now show that multiple cells of these fluidic batteries can be connected in series and/or in parallel in a predictable way to obtain desired values of current and potential, and that the batteries can be optimized to last for a short period of time (<1 min) or for up to 10-15 min. This paper also (i) outlines and quantifies the parameters that can be adjusted to maximize the current and potential of fluidic batteries, (ii) describes two general configurations for fluidic batteries, and (iii) provides equations that enable prediction of the current and potential that can be obtained when these two general designs are varied. This work provides the foundation upon which future applications of fluidic batteries will be based.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据