4.6 Article

Highly lipophilic fluorescent dyes in nano-emulsions: towards bright non-leaking nano-droplets

期刊

RSC ADVANCES
卷 2, 期 31, 页码 11876-11886

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ra21544f

关键词

-

资金

  1. CNRS
  2. Universite de Strasbourg
  3. ANR JCJC [ANR-11-JS07-014-01]
  4. INSERM
  5. FRM
  6. HFSP
  7. Marie Curie FP7
  8. French Embassy
  9. University of Strasbourg

向作者/读者索取更多资源

Dye-loaded lipid nano-droplets present an attractive alternative to inorganic nanoparticles, as they are composed of non-toxic biodegradable materials and are easy to prepare. However, to achieve high fluorescence brightness, the nano-droplets have to be heavily loaded with the dyes avoiding fluorescence self-quenching and release (leakage) of the encapsulated dyes from the nano-droplets in biological media. In the present work, we have designed highly lipophilic fluorescent derivatives of 3-alkoxyflavone (F888) and Nile Red (NR668) that can be encapsulated in the lipophilic core of stable nano-emulsion droplets at exceptionally high concentrations in the oil core, i.e. up to 170 mM and 17 mM, respectively, corresponding to similar to 830 and 80 dyes per 40 nm droplet. Despite this high loading, these dyes keep high fluorescence quantum yields and thus, provide high nano-droplet brightness, probably due to their bulky structure preventing self-quenching. Moreover, simultaneous encapsulation of both dyes at high concentrations in single nano-droplets allows the observation of FRET. FRET and fluorescence correlation spectroscopy (FCS) studies showed that NR668 release in the serum-containing medium is very slow, while the reference hydrophobic dye Nile Red leaks immediately. This drastic difference in the leakage profile between NR668 and Nile Red was confirmed by in vitro cellular studies as well as by in vivo angiography imaging on zebrafish models, where the NR668-loaded nano-droplets remained in the blood, while the parent Nile Red leaked rapidly from the droplets distributing all over the animal body. This study suggests new molecular design strategies for obtaining bright nano-droplets without dye leakage and their use as efficient and stable optical contrast agents in vitro and in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据