4.6 Article

Super-wetting, wafer-sized silicon nanowire surfaces with hierarchical roughness and low defects

期刊

RSC ADVANCES
卷 2, 期 30, 页码 11472-11480

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ra22267a

关键词

-

资金

  1. Department Bioengineering Department, Texas AM University
  2. NSF through CBET [0933719]

向作者/读者索取更多资源

This paper reports the fabrication of wafer-sized silicon nanowire (SiNW) surfaces using a modified metal-assisted chemical etching method. The complete fabrication and coating process can be performed in less than three hours, is easily size-scalable, and produces surfaces with very low surface defects, complex, hierarchical surface roughness, and large nanowire height. These surfaces exhibit extreme wettabilities depending on surface coating: oxidized SiNW surfaces are superhydrophilic, while surfaces coated with a fluorinated hydrocarbon are superhydrophobic. The wetting and morphological properties of SiNW surfaces made with one and two etches of different duration are characterized vis-a-vis their effect on water drop mobility. Compared to a single etch process, a double etch followed by coating with a fluorinated hydrocarbon more efficiently produces SiNW surfaces with high contact angles on which microliter-sized water drops roll-off at approximately 0 degrees tilt angle. Due to their very low friction, extreme wetting properties, ease of fabrication, low-cost, and large-sizes, these SiNW surfaces may be advantageous in microfluidic devices, bioanalysis systems sensitive to cross-contamination that require disposable substrates, and other applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据