4.6 Review

Selective adsorption for removing sulfur: a potential ultra-deep desulfurization approach of jet fuels

期刊

RSC ADVANCES
卷 2, 期 5, 页码 1700-1711

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1ra00944c

关键词

-

资金

  1. Office of Naval Research of the USA
  2. University of Tennessee SimCenter [8500011366]

向作者/读者索取更多资源

Jet fuels are strategic fuels widely used in airplanes. Through appropriate reforming and shifting processing, jet fuels can be converted into syngas, which is a suitable fuel to solid oxide fuel cells for many auxiliary and backup power units. Integrated micro fuel processors in combination with solid oxide fuel cell (SOFC) stacks using jet fuels have been viewed as attractive portable power sources. Because the sulfur in jet fuels easily causes catalyst poisoning for fuel processing reactions and the electrochemical reactions in fuel cells, ultra-deep sulfur removal in jet fuels and many other hydrocarbon fuels has become a very important and active research subject worldwide in the last 15 years. Amongst the state-of-the-art technologies, selective adsorption for removing sulfur (SARS) is emerged to be very attractive. SARS has been regarded as the most promising approach because it obtains ultra-deep desulfurization efficiency at ambient temperature and atmospheric pressure without hydrogen consumption. In this paper, we survey the current status and prospect of the SARS technology for jet fuels, and will discuss some important issues remaining for the SARS technology in the future. The final goal of this survey is to find/innovate a promising method for jet fuel desulfurization, which is most suitable for supplying fuels to solid oxide fuel cell auxiliary and backup power units.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据