4.6 Article

Serum albumin reduces the antibacterial and cytotoxic effects of hydrogel-embedded colloidal silver nanoparticles

期刊

RSC ADVANCES
卷 2, 期 18, 页码 7190-7196

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ra20546g

关键词

-

向作者/读者索取更多资源

Although silver nanoparticles (AgNPs) are widely used as ion-releasing antimicrobial additives in medical devices, recent reports indicate the suppression of effectiveness in the presence of blood serum proteins. Bovine serum albumin (BSA) is known to bind silver and silver ions, so that the presence of proteins may change the antibacterial or cytotoxic properties of AgNPs even when they are embedded in a solid agar hydrogel matrix. We produced ligand-free AgNPs by laser ablation in water resulting in aqueous silver mass concentrations of 0.5 to 7.1%. The AgNPs were immersed into agar in concentrations of 5-70 mu g ml(-1) medium. We examined the influence of 1% BSA within the hydrogel matrix on the nanoparticles' antibacterial effect on four clinically relevant bacteria strains and the cytotoxicity of colloidal AgNP was tested on fibroblasts with or without 1% BSA. The hydrogel-immobilized AgNPs showed a significant reduction of antibacterial activity in the presence of BSA. Cytotoxicity started at a colloidal AgNP concentration of 35 mu g ml(-1), and addition of BSA significantly reduced the effect on cell morphology and viability. Overall, in the presence of BSA, both antibacterial and cytotoxic effects of AgNPs were markedly reduced. Notably, a therapeutic AgNP window, requiring a dose at which pathogenic bacteria growth is inhibited while fibroblast viability is not affected, could only be observed in the absence of BSA. Addition of BSA reduces the antibacterial activity of AgNP to a point without significant growth inhibition of S. aureus but still observable cytotoxic effects on HGFib. Hence, the presence of a major blood serum protein significantly decreases the antimicrobial effects of AgNPs on a range of pathogenic bacteria even when the NPs are immobilized within an agar hydrogel model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据