4.6 Review

CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion

期刊

RSC ADVANCES
卷 1, 期 4, 页码 545-567

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1ra00307k

关键词

-

资金

  1. National Natural Science Foundation of China [20672054, 20872073]
  2. NSFC [21150110105]
  3. Committee of Science and Technology of Tianjin

向作者/读者索取更多资源

Ionic liquids (ILs), a kind of novel green medium composed entirely of cations and anions, have attracted considerable attention due to their unique properties such as non-volatility, tunable polarity, high stability and so on. In this article, the latest progress on the absorption and subsequent conversion of CO2 by using ILs as absorbents, catalysts or promoters will be summarized. The chemical absorption performance of ILs, especially task-specific ionic liquids (TSILs) such as amino-functionalized ILs, superbase-derived protic ILs has been systematically illustrated. Although significant advances have been made, extensive energy input in the desorption process to recover absorbents would still be a crucial barrier to realizing practical carbon capture and sequestration (CCS). On the other hand, efficient applications of CO2 in the synthesis of valuable compounds such as organic carbonates, urea derivatives, oxazolidinones and formic acid can also be promoted by employing TSILs as catalysts/reaction media. We anticipate that an integration of chemical capture of CO2 with its utilization, a so-called CO2 capture and utilization (CCU) protocol would be an ideal strategy to solve the energy penalty problem in common CCS without the need for additional heat desorption. The essence of this CCU concept is to use TSILs for CO2 capture and substantial activation, which could allow catalytic transformation of CO2 to be accomplished smoothly under low pressure (ideally at 1 atm).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据