4.6 Article

Photochemical behavior of PVA as an oxygen-barrier polymer for solar cell encapsulation

期刊

RSC ADVANCES
卷 1, 期 8, 页码 1471-1481

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1ra00350j

关键词

-

向作者/读者索取更多资源

Polyvinyl alcohol (PVA) is a water-soluble polymer that is anticipated to be a good candidate for incorporation into multilayer coatings of organic solar cells due to its high transparency and ability to form a barrier to oxygen. Because a long lifetime is a prerequisite for successful applications, it was necessary to study the photochemical behavior of PVA under solar light. PVA films were exposed to UV-visible light irradiation (lambda > 300 nm) in accelerated aging conditions representative of natural ageing. Modifications in the chemical structure of aged samples irradiated at ambient air were recorded. Due to the low oxygen permeability of PVA films, it was shown that the photooxidative degradation of PVA films is restricted to the surface (<5 mu m) and results in a large amount of chain scissions, with a progressive erosion of the surface of the irradiated material. The oxidation products formed along the macromolecular chains, and low molecular weight species trapped in the matrix or emitted in the gas phase were also identified. An oxidation mechanism was then proposed to account for these modifications. However, irradiation in the absence of oxygen demonstrated the high photostability of PVA films, which permits the use of PVA as a sublayer in inorganic/organic multilayer encapsulation systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据