4.6 Article

Refractive index patterning of infrared glass ceramics through laser-induced vitrification [Invited]

期刊

OPTICAL MATERIALS EXPRESS
卷 8, 期 9, 页码 2722-2733

出版社

OPTICAL SOC AMER
DOI: 10.1364/OME.8.002722

关键词

-

资金

  1. University of Central Florida

向作者/读者索取更多资源

Refractive index modification in glass or crystalline materials typically involves conversion of state (amorphous to crystalline or crystalline to amorphous) through a homogeneous, external stimulus such as laser-or current-induced heating, melting, or localized (resonant) bond modification. With the exception of traditional phase change materials that exploit reversibility, usually at high speeds and over multiple cycles, localized patterning of the refractive index is most frequently employed to induce a complete change of phase to enable the creation of embedded or surface optical structures. The present effort employs a novel, laser-induced vitrification (LIV) process developed to spatially modify the refractive index in a fully homogeneous glass ceramic material. Such processing leads to a local re-vitrification of the pre-existing nanocrystalline microstructure within the material to realize spatially-defined, refractive index profiles. Post-processing refractive index modification on the order of Delta n similar to-0.062 was realized in a partially crystallized, multicomponent chalcogenide glass ceramic nanocomposite, subjected to bandgap laser exposure. Spatially-varied phase modification in the lateral and axial directions within a bulk glass ceramic is quantified and the optical function of the resulting structure is demonstrated in the formation of an infrared grating. The underlying mechanism associated with the resulting local refractive index modification is explained through quantification of the multi-phase material attributes including parent glass properties, crystal phase identity and phase fraction as determined through micro-XRD and electron microscopic analysis. This correlation validates the proposed mechanism associated with the modification. A threshold power density for LIV in the starting glass ceramic has been determined based on exposure conditions and material attributes. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据