4.6 Article

Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry

期刊

OPTICAL MATERIALS EXPRESS
卷 5, 期 1, 页码 29-43

出版社

OPTICAL SOC AMER
DOI: 10.1364/OME.5.000029

关键词

-

资金

  1. National Natural Science Foundation of China [61176041, 61036005, 11074015]

向作者/读者索取更多资源

Research concerning CH3NH3PbI3 solar cells (SCs) has attracted great attention. However, the CH3NH3PbI3 material's critical dispersion relationships, i.e. the refractive index and the extinction coefficient, n(lambda) and k(lambda), as functions of lambda, have been little studied. Without this knowledge, it will be difficult to quantitively investigate the optical properties of the CH3NH3PbI3 SCs. We studied n(lambda) and k(lambda) of CH3NH3PbI3 with spectroscopic ellipsometry. The CH3NH3PbI3 film was fabricated by dualsource evaporation, and the surface roughness was investigated to facilitate SE modeling. With the acquired n(lambda) and k(lambda), we applied the finite difference time domain method to calculate the ultimate efficiency eta(d), without considering carrier recombination, of the planar CH3NH3PbI3 SC as a function of the film thickness, d, from 31.25 nm to 2 mu m, and compared with those of GaAs, c-Si, and a-Si:H( 10% H) SCs. It is demonstrated that, eta(d) for CH3NH3PbI3 SC is a little smaller than, but very close to that for the GaAs SC, however, much larger than that for the c-Si SC, for all d calculated; and much larger than that for the a-Si:H( 10% H) SC when d > 100 nm. Apart from an appropriate band gap near 1.5 eV, the larger k(lambda) and smaller n(lambda) of CH3NH3PbI3 explain why the CH3NH3PbI3 SC has high efficiency. (C) 2014 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据