4.3 Article

Hedgehog signaling sensitizes Glioma stem cells to endogenous nano-irradiation

期刊

ONCOTARGET
卷 5, 期 14, 页码 5483-5493

出版社

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.2123

关键词

Hedgehog; glioma stem cells; Auger electron emitter; nano-irradiation; thymidine analogue

资金

  1. START AZ (University Hospital Aachen, RWTH Aachen University) [131/11]

向作者/读者索取更多资源

The existence of therapy resistant glioma stem cells is responsible for the high recurrence rate and incurability of glioblastomas. The Hedgehog pathway activity plays an essential role for self-renewal capacity and survival of glioma stem cells. We examined the potential of the Sonic hedgehog ligand for sensitizing of glioma stem cells to endogenous nano-irradiation. We demonstrate that the Sonic hedgehog ligand preferentially and efficiently activats glioma stem cells to enter the radiation sensitive G2/M phase. Concomitant inhibition of de novo thymidine synthesis with fluorodeoxyuridine and treatment with the Auger electron emitting thymidine analogue 5-[I-125]-Iodo-4'-thio-2'-deoxyuridine ([I-125]ITdU) leads to a fatal nano-irradiation in sensitized glioma stem cells. Targeting of proliferating glioma stem cells with DNA-incorporated [I-125]ITdU efficiently invokes the intrinsic apoptotic pathway despite active DNA repair mechanisms. Further, [I-125]ITdU completely inhibits survival of glioma stem cells in vitro. Analysis of non-stem glioblastoma cells and normal human astrocytes reveals that glioma stem cells differentially respond to Sonic hedgehog ligand. These data demonstrate a highly efficient and controllable single-cell kill therapeutic model for targeting glioma stem cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据