4.3 Article

Brain Tumor Stem Cell Multipotency Correlates with Nanog Expression and Extent of Passaging in Human Glioblastoma Xenografts

期刊

ONCOTARGET
卷 4, 期 5, 页码 792-801

出版社

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.1059

关键词

nanog; glioma; GBM; brain tumor stem cell; multipotency; xenograft; SDF-1

资金

  1. Mayo Clinic
  2. Mayo Brain Tumor SPORE (US National Institutes of Health) [CA108961]

向作者/读者索取更多资源

Glioblastoma multiforme (GBM) is the most common primary brain tumor, with a median survival of only 15 months. A subpopulation of cells, the brain tumor stem cells (BTSCs), may be responsible for the malignancy of this disease. Xenografts have proven to be a robust model of human BTSCs, but the effects of long-term passaging have yet to be determined. Here we present a study detailing changes in BTSC multipotency, invasive migration, and proliferation after serial passaging of human GBM xenografts. Immunocytochemistry and tumorsphere formation assays demonstrated the presence of BTSCs in both early generation (EG-BTSCs; <15 passages) and late generation (LG-BTSCs; >24 passages) xenografts. The EG-BTSCs upregulated expression of lineage markers for neurons and oligodendrocytes upon differentiation, indicating multipotency. In contrast, the LG-BTSCs were restricted to an astrocytic differentiation. Quantitative migration and proliferation assays showed that EG-BTSCs are more migratory and proliferative than LG-BTSCs. However, both populations respond similarly to the chemokine SDF-1 by increasing invasive migration. These differences between the EG- and LG-BTSCs were correlated with a significant decrease in nanog expression as determined by qRT-PCR. Mice implanted intracranially with EG- BTSCs showed shorter survival when compared to LG-BTSCs. Moreover, differentiation prior to implantation of EG- BTSCs, but not LG-BTSCs, led to increased survival. Thus, nanog may identify multipotent BTSCs. Furthermore, limited passaging of xenografts preserves these multipotent BTSCs, which may be an essential underlying feature of GBM lethality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据