4.6 Article

Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact

期刊

SUSTAINABILITY
卷 7, 期 12, 页码 16498-16512

出版社

MDPI
DOI: 10.3390/su71215830

关键词

green template; building information modeling (BIM); life cycle assessment; embodied environmental impact; building

资金

  1. Basic Science Research Program through National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology [NRF-2015R1D1A1A01057925]

向作者/读者索取更多资源

The increased popularity of building information modeling (BIM) for application in the construction of eco-friendly green buildings has given rise to techniques for evaluating green buildings constructed using BIM features. Existing BIM-based green building evaluation techniques mostly rely on externally provided evaluation tools, which pose problems associated with interoperability, including a lack of data compatibility and the amount of time required for format conversion. To overcome these problems, this study sets out to develop a template (the green template) for evaluating the embodied environmental impact of using a BIM design tool as part of BIM-based building life-cycle assessment (LCA) technology development. Firstly, the BIM level of detail (LOD) was determined to evaluate the embodied environmental impact, and constructed a database of the impact factors of the embodied environmental impact of the major building materials, thereby adopting an LCA-based approach. The libraries of major building elements were developed by using the established databases and compiled evaluation table of the embodied environmental impact of the building materials. Finally, the green template was developed as an embodied environmental impact evaluation tool and a case study was performed to test its applicability. The results of the green template-based embodied environmental impact evaluation of a test building were validated against those of its actual quantity takeoff (2D takeoff), and its reliability was confirmed by an effective error rate of 5%. This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP), acidification (AP), eutrophication (EP), abiotic depletion (ADP), ozone depletion (ODP), and photochemical oxidant creation (POCP), using the life a cycle assessment (LCA) method. To achieve this, we proposed an LCA method specifically applicable to concrete and tailored to the Korean concrete industry by adapting the ISO standards to suit the Korean situations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据