4.3 Article

Telomere-Homologous G-Rich Oligonucleotides Sensitize Human Ovarian Cancer Cells to TRAIL-Induced Growth Inhibition and Apoptosis

期刊

NUCLEIC ACID THERAPEUTICS
卷 23, 期 3, 页码 167-174

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/nat.2012.0401

关键词

-

资金

  1. Department of Defense [W81XWH-07-1-0577 (OC060348), W81XWH-06-1-0408]
  2. National Cancer Institute [CA133654]
  3. Karin Grunebaum Cancer Research Foundation

向作者/读者索取更多资源

G-rich T-oligos (GT-oligos; oligonucleotides with homology to telomeres) elicit a DNA damage response in cells and induce cytotoxic effects in certain tumor cell lines. We have previously shown that GT-oligo inhibits growth, arrests cell cycle, and induces apoptosis in ovarian, pancreatic, and prostate cancer cells. However, not all ovarian cancer cell lines are susceptible to GT-oligo exposure. GT-oligo was found to induce transcript expression of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors DR-4 and DR-5, which are generally silenced in ovarian cancer cells, rendering them insensitive to TRAIL. Exposure of TRAIL- and GT-oligo-resistant cell lines to GT-oligo rendered them sensitive to the cytotoxic effects of TRAIL, producing more than additive inhibition of growth. An intracellular inhibitor of the extrinsic apoptotic pathway, FLICE-like Inhibitory Protein-Short (FLIPs), was down-regulated and Jun kinase (JNK) was activated by exposure to GT-oligo. JNK inhibition partially reversed the growth inhibition caused by the combination of GT-oligo and TRAIL indicating partial involvement of the Jun kinase pathway in the resulting cytotoxic effect. Both capase-8 and caspases 3/7 were activated by exposure to GT-oligo plus TRAIL, consistent with activation of the extrinsic apoptotic pathway. These results demonstrate a novel way of sensitizing resistant ovarian cancer cells to TRAIL-mediated cytotoxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据