4.7 Article

Graphene/hexagonal boron nitride/graphene nanopore for electrical detection of single molecules

期刊

NPG ASIA MATERIALS
卷 6, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/am.2014.29

关键词

ABC stacking; graphene; hexagonal boron nitride; nonequilibrium Green's function; transport properties

资金

  1. Japan Society for the Promotion of Science (JSPS)
  2. Grants-in-Aid for Scientific Research [26220603] Funding Source: KAKEN

向作者/读者索取更多资源

Graphene nanopore device, since its proposal, has witnessed tremendous progress toward the goal of single-molecule detection. However, one central challenge of preparing electrodes with nanometer precision on the graphene remains unsolved. Here we show theoretically the feasibility of graphene/hexagonal BN (h-BN)/graphene structure where top graphene layer acts as one electrical contact while the bottom layer as the other. Based on quantum chemistry/nonequilibrium Green's function investigation, we give clear physical pictures why ABC stacking of the above heterogeneous layers results in excellent insulating of the top and bottom graphene electrodes. On the other hand, when the target molecule is inside the nanopore the background conductance through the h-BN dielectric will not keep decreasing even though more layers of h-BN are inside the nanopore. The mechanism is illustrated as that the presence of the molecule will enhance the vertical transmission through the h-BN dielectric via quantum interference. We employ a single-level molecule model, and show quantitatively that the discussed effect can be utilized as a powerful signal amplifier for the molecule conductance, thus enhancing the measurability of single molecules by 3-4 orders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据