4.6 Article

Antisense MMP-9 RNA inhibits malignant glioma cell growth in vitro and in vivo

期刊

NEUROSCIENCE BULLETIN
卷 29, 期 1, 页码 83-93

出版社

SPRINGER
DOI: 10.1007/s12264-012-1296-5

关键词

matrix-degrading metalloproteinase 9; antisense MMP-9 RNA; cell proliferation; malignant glioma cells

资金

  1. National Natural Science Foundation of China [30770827, 31170864, 81100887]
  2. National Basic Research Development Program of China (973 Program) [2010CB529405]
  3. Key Laboratory Project of Tianjin Municipality for Science and Technology [10SYSYJC28800]
  4. Major Program of Research on Applied Fundamentals and Frontier Technologies [10JCZDJC19400]
  5. Key Program of Higher Education of Tianjin Municipality for Science and Technology [2004ZD06, 20060202]
  6. Program for New Century Excellent Talents in University of China [NCET-11-1067]
  7. Key Project of Natural Science Foundation of Tianjin Municipality, China [12JCZDJC24200]
  8. Key Project for Science and Technology of Ministry of Education, China [212005]

向作者/读者索取更多资源

The matrix-degrading metalloproteinases (MMPs), particularly MMP-9, play important roles in the pathogenesis and development of malignant gliomas. In the present study, the oncogenic role of MMP-9 in malignant glioma cells was investigated via antisense RNA blockade in vitro and in vivo. TJ905 malignant glioma cells were transfected with pcDNA3.0 vector expressing antisense MMP-9 RNA (pcDNA-ASMMP9), which significantly decreased MMP-9 expression, and cell proliferation was assessed. For in vivo studies, U251 cells, a human malignant glioma cell line, were implanted subcutaneously into 4- to 6-week-old BALB/c nude mice. The mice bearing well-established U251 gliomas were treated with intratumoral pcDNA-AS-MMP9-Lipofectamine complex (AS-MMP-9-treated group), subcutaneous injection of endostatin (endostatin-treated group), or both (combined therapy group). Mice treated with pcDNA (empty vector)-Lipofectamine served as the control group. Four or eight weeks later, the volume and weight of tumor, MMP-9 expression, microvessel density and proliferative activity were assayed. We demonstrate that pcDNA-AS-MMP9 significantly decreased MMP-9 expression and inhibited glioma cell proliferation. Volume and weight of tumor, MMP-9 expression, microvessel density and proliferative activity in the antisense-MMP-9-treated and therapeutic alliance groups were significantly lower than those in the control group. The results suggest that MMP-9 not only promotes malignant glioma cell invasiveness, but also affects tumor cell proliferation. Blocking the expression of MMP-9 with antisense RNA substantially suppresses the malignant phenotype of glioma cells, and thus can be used as an effective therapeutic strategy for malignant gliomas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据