4.6 Article

Neural circuits and temporal plasticity in hindlimb representation of rat primary somatosensory cortex: revisited by multi-electrode array on brain slices

期刊

NEUROSCIENCE BULLETIN
卷 26, 期 3, 页码 175-187

出版社

SPRINGER
DOI: 10.1007/s12264-010-0308-6

关键词

planar multi-electrode array; two-dimensional current source density imaging; primary somatosensory cortex; neural circuits; long-term potentiation

资金

  1. National Basic Research Development Program (973) of China [2006CB500800]
  2. Ministry of Education [IRT0560]
  3. National Natural Science Foundation of China [30670692, 30770668]

向作者/读者索取更多资源

Objective The well-established planar multi-electrode array recording technique was used to investigate neural circuits and temporal plasticity in the hindlimb representation of the rat primary somatosensory cortex (S1 area). Methods Freshly dissociated acute brain slices of rats were subject to constant perfusion with oxygenated artificial cerebrospinal fluid (95% O(2) and 5% CO(2)), and were mounted on a Med64 probe (64 electrodes, 8x8 array) for simultaneous multi-site electrophysiological recordings. Current sources and sinks across all the 64 electrodes were transformed into two-dimensional current source density images by bilinear interpolation at each point of the 64 electrodes. Results The local intracortical connection, which is involved in mediation of downward information flow across layers II-VI, was identified by electrical stimulation (ES) at layers II-III. The thalamocortical connection, which is mainly involved in mediation of upward information flow across layers II-IV, was also characterized by ES at layer IV. The thalamocortical afferent projections were likely to make more synaptic contacts with S1 neurons than the intracortical connections did. Moreover, the S1 area was shown to be more easily activated and more intensively innervated by the thalamocortical afferent projections than by the intracortical connections. Finally, bursting conditioning stimulus (CS) applied within layer IV of the S1 area could successfully induce long-term potentiation (LTP) in 5 of the 6 slices (83.3%), while the same CS application at layers II-III induced no LTP in any of the 6 tested slices. Conclusion The rat hindlimb representation of S1 area is likely to have at least 2 patterns of neural circuits on brain slices: one is the intracortical circuit (ICC) formed by interlaminar connections from layers II-III, and the other is the thalamocortical circuit (TCC) mediated by afferent connections from layer IV. Besides, ICC of the S1 area is spatially limited, with less plasticity, while TCC is spatially extensive and exhibits a better plasticity in response to somatosensory afferent stimulation. The present data provide a useful experimental model for further studying microcircuit properties in S1 cortex at the network level in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据