4.6 Article

A Network-Constrained Integrated Method for Detecting Spatial Cluster and Risk Location of Traffic Crash: A Case Study from Wuhan, China

期刊

SUSTAINABILITY
卷 7, 期 3, 页码 2662-2677

出版社

MDPI
DOI: 10.3390/su7032662

关键词

-

资金

  1. National Natural Science Foundation of China [41371427/D0108, 41271455/D0108]
  2. Fundamental Research Funds for the Central Universities [2012205020215]
  3. Traffic Management Department of Wuhan

向作者/读者索取更多资源

Research on spatial cluster detection of traffic crash (TC) at the city level plays an essential role in safety improvement and urban development. This study aimed to detect spatial cluster pattern and identify riskier road segments (RRSs) of TC constrained by network with a two-step integrated method, called NKDE-GLINCS combining density estimation and spatial autocorrelation. The first step is novel and involves in spreading TC count to a density surface using Network-constrained Kernel Density Estimation (NKDE). The second step is the process of calculating local indicators of spatial association (LISA) using Network-constrained Getis-Ord Gi* (GLINCS). GLINCS takes the smoothed TC density as input value to identify locations of road segments with high risk. This method was tested using the TC data in 2007 in Wuhan, China. The results demonstrated that the method was valid to delineate TC cluster and identify risk road segments. Besides, it was more effective compared with traditional GLINCS using TC counting as input. Moreover, the top 20 road segments with high-high TC density at the significance level of 0.1 were listed. These results can promote a better identification of RRS, which is valuable in the pursuit of improving transit safety and sustainability in urban road network. Further research should address spatial-temporal analysis and TC factors exploration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据