4.8 Article

Microbial temperature sensitivity and biomass change explain soil carbon loss with warming

期刊

NATURE CLIMATE CHANGE
卷 8, 期 10, 页码 885-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41558-018-0259-x

关键词

-

资金

  1. JPI Climate Project (COUP-Austria) [BMWFW-6.020/0008]
  2. European Research Council Synergy Grant (IMBALANCE-P) [ERC-2013-SyG 610028]
  3. European Research Council Starting Grant (DormantMicrobes) [636928]
  4. European Research Council Advanced Grant (NITRICARE) [294343]
  5. Icelandic Research Council (ForHot-Forest) [163272-051]
  6. ClimMani COST Action [ES1308]
  7. European Research Council (ERC) [294343, 636928] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Soil microorganisms control carbon losses from soils to the atmosphere(1-3), yet their responses to climate warming are often short-lived and unpredictable (4-7). Two mechanisms, microbial acclimation and substrate depletion, have been proposed to explain temporary warming effects on soil microbial activity(8-10). However, empirical support for either mechanism is unconvincing. Here we used geothermal temperature gradients (>50 years of field warming)(11) and a short-term experiment to show that microbial activity (gross rates of growth, turnover, respiration and carbon uptake) is intrinsically temperature sensitive and does not acclimate to warming (+6 degrees C) over weeks or decades. Permanently accelerated microbial activity caused carbon loss from soil. However, soil carbon loss was temporary because substrate depletion reduced microbial biomass and constrained the influence of microbes over the ecosystem. A microbial biogeochemical model(12-14) showed that these observations are reproducible through a modest, but permanent, acceleration in microbial physiology. These findings reveal a mechanism by which intrinsic microbial temperature sensitivity and substrate depletion together dictate warming effects on soil carbon loss via their control over microbial biomass. We thus provide a framework for interpreting the links between temperature, microbial activity and soil carbon loss on timescales relevant to Earth's climate system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据