4.8 Article

Global soil carbon projections are improved by modelling microbial processes

期刊

NATURE CLIMATE CHANGE
卷 3, 期 10, 页码 909-912

出版社

NATURE PORTFOLIO
DOI: 10.1038/NCLIMATE1951

关键词

-

资金

  1. National Science Foundation [AGS-1020767]
  2. Office of Science (BER), US Department of Energy
  3. Direct For Biological Sciences [0928388] Funding Source: National Science Foundation
  4. Div Atmospheric & Geospace Sciences
  5. Directorate For Geosciences [1021613, 1020767] Funding Source: National Science Foundation
  6. Emerging Frontiers [0928388] Funding Source: National Science Foundation

向作者/读者索取更多资源

Society relies on Earth system models (ESMs) to project future climate and carbon (C) cycle feedbacks. However, the soil C response to climate change is highly uncertain in these models(1,2) and they omit key biogeochemical mechanisms(3-5). Specifically, the traditional approach in ESMs lacks direct microbial control over soil C dynamics(6-8). Thus, we tested a new model that explicitly represents microbial mechanisms of soil C cycling on the global scale. Compared with traditional models, the microbial model simulates soil C pools that more closely match contemporary observations. It also projects a much wider range of soil C responses to climate change over the twenty-first century. Global soils accumulate C if microbial growth efficiency declines with warming in the microbial model. If growth efficiency adapts to warming, the microbial model projects large soil C losses. By comparison, traditional models project modest soil C losses with global warming. Microbes also change the soil response to increased C inputs, as might occur with CO2 or nutrient fertilization. In the microbial model, microbes consume these additional inputs; whereas in traditional models, additional inputs lead to C storage. Our results indicate that ESMs should simulate microbial physiology to more accurately project climate change feedbacks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据