4.8 Article

Enhanced poleward moisture transport and amplified northern high-latitude wetting trend

期刊

NATURE CLIMATE CHANGE
卷 3, 期 1, 页码 47-51

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NCLIMATE1631

关键词

-

资金

  1. US National Science Foundation
  2. Japan Agency for Marine-Earth Science and Technology
  3. Joint DECC/Defra Met Office Hadley Centre Climate Programme

向作者/读者索取更多资源

Observations and climate change projections forced by greenhouse gas emissions have indicated a wetting trend in northern high latitudes, evidenced by increasing Eurasian Arctic river discharges(1-3). The increase in river discharge has accelerated in the latest decade and an unprecedented, record high discharge occurred in 2007 along with an extreme loss of Arctic summer sea-ice cover(4-6). Studies have ascribed this increasing discharge to various factors attributable to local global warming effects, including intensifying precipitation minus evaporation, thawing permafrost, increasing greenness and reduced plant transpiration(7-11). However, no agreement has been reached and causal physical processes remain unclear. Here we show that enhancement of poleward atmospheric moisture transport (AMT) decisively contributes to increased Eurasian Arctic river discharges. Net AMT into the Eurasian Arctic river basins captures 98% of the gauged climatological river discharges. The trend of 2.6% net AMT increase per decade accounts well for the 1.8% per decade increase in gauged discharges and also suggests an increase in underlying soil moisture. A radical shift of the atmospheric circulation pattern induced an unusually large AMT and warm surface in 2006-2007 over Eurasia, resulting in the record high discharge.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据