4.8 Article

Biogeochemical and ecological feedbacks in grassland responses to warming

期刊

NATURE CLIMATE CHANGE
卷 2, 期 6, 页码 458-461

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NCLIMATE1486

关键词

-

资金

  1. National Science Foundation [DEB-0092642, DEB-0949460]
  2. Science Foundation Arizona [GRF 0001-07]
  3. Direct For Biological Sciences
  4. Division Of Environmental Biology [0949460] Funding Source: National Science Foundation

向作者/读者索取更多资源

Plant growth often responds rapidly to experimentally simulated climate change(1,2). Feedbacks can modulate the initial responses(3), but these feedbacks are difficult to detect when they operate on long timescales(4). We transplanted intact plant-soil mesocosms down an elevation gradient to expose them to a warmer climate and used collectors and interceptors to simulate changes in precipitation. Here, we show that warming initially increased aboveground net primary productivity in four grassland ecosystems, but the response diminished progressively over nine years. Warming altered the plant community, causing encroachment by species typical of warmer environments and loss of species from the native environment-trends associated with the declining response of plant productivity. Warming stimulated soil nitrogen turnover, which dampened but did not reverse the temporal decline in the productivity, response. Warming also enhanced N losses, which may have weakened the expected biogeochemical feedback where warming stimulates N mineralization and plant growth(1,5,6). Our results, describing the responses of four ecosystems to nearly a decade of simulated climate change, indicate that short-term experiments are insufficient to capture the temporal variability and trend of ecosystem responses to environmental change and their modulation through biogeochemical and ecological feedbacks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据