3.8 Review

Iron and siderophores in fungal-host interactions

期刊

MYCOLOGICAL RESEARCH
卷 112, 期 -, 页码 170-183

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mycres.2007.11.012

关键词

metal toxicity; metal uptake; non-ribosomal peptide synthetases; pathogenicity; symbiosis

类别

向作者/读者索取更多资源

Most fungi and bacteria express specific mechanisms for the acquisition of iron from the hosts they infect for their own survival. This is primarily because iron plays a key catalytic role in various vital cellular reactions in conjunction with the fact that iron is not freely available in these environments due to host sequestration. High-affinity iron uptake systems, such as siderophore-mediated iron uptake and reductive iron assimilation, enable fungi to acquire limited iron from animal or plant hosts. Regulating iron uptake is crucial to maintain iron homeostasis, a state necessary to avoid iron-induced toxicity from iron abundance, while simultaneously supplying iron required for biochemical demand. Siderophores play diverse roles in fungal-host interactions, many of which have been principally delineated from gene deletions in non-ribosomal peptide synthetases, enzymes required for siderophore biosynthesis. These analyses have demonstrated that siderophores are required for virulence, resistance to oxidative stress, asexual/sexual development, iron storage, and protection against iron-induced toxicity in some fungal organisms. in this review, the strategies fungi employ to obtain iron, siderophore biosynthesis, and the regulatory mechanisms governing iron homeostasis will be discussed with an emphasis on siderophore function and relevance for fungal organisms in their interactions with their hosts. (C) 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据