4.6 Article

Electronic and Optical Properties of Substitutional and Interstitial Si-Doped ZnO

期刊

MATERIALS
卷 5, 期 11, 页码 2088-2100

出版社

MDPI
DOI: 10.3390/ma5112088

关键词

First-principles; DFT plus U; Si-doped ZnO; electronic structure; optical property

资金

  1. National Science Council in Taiwan [NSC 101-2221-E-131-022]

向作者/读者索取更多资源

This study investigates the formation energies, electronic structures, and optical properties of pure and Si-doped ZnO using density functional theory and the Hubbard U (DFT + U-d + U-p) method. The difference in lattice constants between calculated results and experimental measurements is within 1%, and the calculated band gap of pure ZnO is in excellent agreement with experimental values. This study considers three possible Si-doped ZnO structures including the substitution of Si for Zn (Si-s(Zn)), interstitial Si in an octahedron (Si-i(oct)), and interstitial Si in a tetrahedron (Si-i(tet)). Results show that the formation energy of Si-s(Zn) defects is the lowest, indicating that Si-s(Zn) defects are formed more easily than Si-i(oct) and Si-i(tet). All three of the Si defect models exhibited n-type conductive characteristics, and except for the Si-i(oct) mode the optical band gap expanded beyond that of pure ZnO. In both the Si-i(oct) and Si-i(tet) models, a heavier effective mass decreased carrier mobility, and deeper donor states significantly decreased transmittance. Therefore, the existence of interestitial Si atoms was bad for the electric and optical properties of ZnO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据