4.6 Review

Bone Substitute Fabrication Based on Dissolution-Precipitation Reactions

期刊

MATERIALS
卷 3, 期 2, 页码 1138-1155

出版社

MDPI
DOI: 10.3390/ma3021138

关键词

apatite; phase transformation; dissolution-precipitation; carbonate apatite; low-crystallinity; precursor

向作者/读者索取更多资源

Although block-or granular-type sintered hydroxyapatite are known to show excellent tissue responses and good osteoconductivity, apatite powder elicits inflammatory response. For the fabrication of hydroxyapatite block or granules, sintering is commonly employed. However, the inorganic component of bone and tooth is not high crystalline hydroxyapatite but low crystalline B-type carbonate apatite. Unfortunately, carbonate apatite powder cannot be sintered due to its instability at high temperature. Another method to fabricate apatite block and/or granule is through phase transformation based on dissolution-precipitation reactions using a precursor phase. This reaction basically is the same as a setting and hardening reaction of calcium sulfate or plaster. In this paper, apatite block fabrication methods by phase transformation based on dissolution-precipitation reactions will be discussed, with a focus on the similarity of the setting and hardening reaction of calcium sulfate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据