4.6 Article

Long-term treatment with dehydroepiandrosterone may lead to follicular atresia through interaction with anti-Mullerian hormone

期刊

JOURNAL OF OVARIAN RESEARCH
卷 7, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1757-2215-7-46

关键词

Polycystic ovary; Animal model; Anti-mullerian hormone; Folliculogenesis; Androgen

向作者/读者索取更多资源

Background: Hyperandrogenism is the primary manifestation of polycystic ovary syndrome (PCOS), which appears to be caused by excess exposure to androgen. As such, androgenized animal models have been developed and investigated to study the etiology of PCOS. Anti-Mullerian hormone (AMH) is known to be associated with follicle growth, and its levels are two to three times higher in women with PCOS than in those with normal ovaries. We studied how duration of androgen administration affects folliculogenesis and AMH expression. Methods: We divided 30 immature (3-week-old) Sprague Dawley rats into six groups. Three groups were injected each evening with dehydroepiandrosterone (DHEA) (6 mg/100 g body weight/0.2 ml sesame oil) for 7, 15 or 30 days, respectively. The three control groups were injected with 0.2 ml of sesame oil for the corresponding lengths of time. Resected ovaries were sectioned and examined to determine follicle numbers at each developmental stage, and immunostained to assess AMH expression. Results: On day 7, follicle numbers and AMH expression levels at each developmental stage of follicle growth were similar in the respective control and DHEA groups. On day 15, the total follicle number (P = 0.041), the percentage of primordial follicles (P = 0.039) and AMH expression were significantly greater in the DHEA than the control group. On day 30, the percentages of primordial (P = 0.005), primary (P = 0.0002) and atretic (P = 0.03) follicles were significantly greater in the DHEA group, whereas the percentage of intermediary follicles (early pre-antral, late preantral, and early antral follicles) was significantly lower in the DHEA group (P = < 0.0001). AMH expression in DHEA-treated rats on day 30 was seen exclusively in the primordial (P = 0.0413) and late antral follicles (p = 0.028). Conclusions: Androgen administration increases AMH production in a process that regulates the growth of primordial follicles. That is, androgen-induced AMH expression provides local negative feedback to folliculogenesis augmented by androgen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据