4.3 Article

A simulation framework for modeling charge transport and degradation in high-k stacks

期刊

JOURNAL OF COMPUTATIONAL ELECTRONICS
卷 12, 期 4, 页码 658-665

出版社

SPRINGER
DOI: 10.1007/s10825-013-0526-z

关键词

Modeling and simulation; Leakage current; Gate oxides; Dielectric reliability; Dielectric breakdown; Non-volatile memory

向作者/读者索取更多资源

In this paper we present a comprehensive physical model that describes charge transport and degradation phenomena in high-k stacks. The physical mechanisms are modeled using a novel material-related approach that includes in a self-consistent fashion the charge transport (dominated by defect-assisted contribution), power dissipation and temperature increase, defect generation, and ion and vacancy diffusion and recombination. The physical properties of defects, which play a crucial role in determining the electrical behavior of the high-k stacks, depend on their atomistic configurations, as calculated using ab-initio methods. This simulation framework represents a powerful tool to interpret electrical characterization measurements. In addition, it can be used to optimize logic and memory device stacks thanks to its predictive statistical capabilities that allow reproducing gate current, threshold voltage increase and time to breakdown (TDDB) statistics. Simulation results performed using this simulation package are shown to reproduce accurately leakage current, Stress-Induced Leakage Current (SILC), threshold voltage shift observed during Positive Bias Temperature Instability (PBTI) stress, TDDB in various dielectric stacks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据