4.6 Article

An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential

期刊

JOURNAL OF CHEMINFORMATICS
卷 3, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1758-2946-3-51

关键词

-

资金

  1. NIBR Education Office

向作者/读者索取更多资源

Background: In drug discovery, a positive Ames test for bacterial mutation presents a significant hurdle to advancing a drug to clinical trials. In a previous paper, we discussed success in predicting the genotoxicity of reagent-sized aryl-amines (ArNH2), a structure frequently found in marketed drugs and in drug discovery, using quantum mechanics calculations of the energy required to generate the DNA-reactive nitrenium intermediate (ArNH:+). In this paper we approach the question of what molecular descriptors could improve these predictions and whether external data sets are appropriate for further training. Results: In trying to extend and improve this model beyond this quantum mechanical reaction energy, we faced considerable difficulty, which was surprising considering the long history and success of QSAR model development for this test. Other quantum mechanics descriptors were compared to this reaction energy including AM1 semi-empirical orbital energies, nitrenium formation with alternative leaving groups, nitrenium charge, and aryl-amine anion formation energy. Nitrenium formation energy, regardless of the starting species, was found to be the most useful single descriptor. External sets used in other QSAR investigations did not present the same difficulty using the same methods and descriptors. When considering all substructures rather than just aryl-amines, we also noted a significantly lower performance for the Novartis set. The performance gap between Novartis and external sets persists across different descriptors and learning methods. The profiles of the Novartis and external data are significantly different both in aryl-amines and considering all substructures. The Novartis and external data sets are easily separated in an unsupervised clustering using chemical fingerprints. The chemical differences are discussed and visualized using Kohonen Self-Organizing Maps trained on chemical fingerprints, mutagenic substructure prevalence, and molecular weight. Conclusions: Despite extensive work in the area of predicting this particular toxicity, work in designing and publishing more relevant test sets for compounds relevant to drug discovery is still necessary. This work also shows that great care must be taken in using QSAR models to replace experimental evidence. When considering all substructures, a random forest model, which can inherently cover distinct neighborhoods, built on Novartis data and previously reported external data provided a suitable model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据