4.4 Article

Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.pnsc.2015.09.005

关键词

Aluminum graphene composites; Powder metallurgy; Corrosion; Tensile property

资金

  1. National Natural Science Foundation of China [50725413]
  2. Ministry of Science and Technology of China (MOST) [2010DI-R50010, 2011FU125Z07]
  3. Chongqing Science and Technology Commission, Chongqing People's Municipal Government [CSTC2013JCYJC60001]

向作者/读者索取更多资源

In present study, the microstructure, mechanical and electrochemical properties of aluminum-graphene nanoplatelets (GNPs) composites were investigated before and after extrusion. The contents of graphene nanoplatelets (GNPs) were varied from 0.25 to 1.0 wt.% in aluminum matrix. The composites were fabricated thorough powder metallurgy method, and the experimental results revealed that A1-0.25%GNPs composite showed better mechanical properties compared with pure A1, A1-0.50%GNPs and A1-0.1.0%GNPs composites. Before extrusion, the A1-0.25% GNPs composite showed similar to 13.5% improvement in ultimate tensile strength (UTS) and similar to 50% enhancement in failure strain over monolithic matrix. On the other hand, A1-0.50%GNPs and A1-0.1.0%GNPs composites showed the tensile strength lower than monolithic matrix. No significant change was observed in 0.2% yield strength (YS) of the composites. However, the extruded materials showed different trends. The 0.2%YS of composites increased with increase in GNPs filler weight fractions. Surprisingly, UTS of composites with 0.25 and 0.50% GNPs was lower than monolithic matrix. The failure strain of the baseline matrix was enhanced by similar to 46% with 0.25% graphene nanoplatelets. The superior mechanical properties (in terms of failure strain) of the A1-0.25%GNPs composite maybe attributed to 2-D structure, high surface area and curled nature of graphene. In addition, the corrosion resistance of pure A1 and its composites reinforced with 0.5 and 1.0 wt% GNPs was also investigated. It was found that the corrosion rate increased considerably by the presence of GNPs. (C) 2015 Chinese Materials Research Society. Production and hosting by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据