4.4 Article

Influence of vegetation parameters on runoff and sediment characteristics in patterned Artemisia capillaris plots

期刊

JOURNAL OF ARID LAND
卷 6, 期 3, 页码 352-360

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s40333-013-0224-5

关键词

arid and semi-arid areas; Artemisia capillaris patches; runoff and sediment; roots and shoots; vegetation parameters

资金

  1. National Natural Science Foundation of China [41301298, 41030532]
  2. Chinese Academy of Sciences [XDA05060300]

向作者/读者索取更多资源

Vegetation patterns are important in the regulation of earth surface hydrological processes in arid and semi-arid areas. Laboratory-simulated rainfall experiments were used at the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Yangling, northwestern China, to quantify the effects of Artemisia capillaris patterns on runoff and soil loss. The quantitative relationships between runoff/sediment yield and vegetation parameters were also thoroughly analyzed using the path analysis method for identifying the reduction mechanism of vegetation on soil erosion. A simulated rainfall intensity of 90 mm/h was applied on a control plot without vegetation (C-0) and on the other three different vegetation distribution patterns: a checkerboard pattern (CP), a banded pattern perpendicular to the slope direction (BP), and a single long strip parallel to the slope direction (LP). Each patterned plot received two sets of experiments, i.e. intact plants and roots only, respectively. All treatments had three replicates. The results showed that all the three other different patterns (CP, BP and LP) of A. capillaris could effectively reduce the runoff and sediment yield. Compared with C-0, the other three intact plant plots had a 12%-25% less runoff and 58%-92% less sediment. Roots contributed more to sediment reduction (46%-70%), whereas shoots contributed more to runoff reduction (57%-81%). BP and CP exhibited preferable controlling effects on soil erosion compared with LP. Path analysis indicated that root length density and plant number were key parameters influencing runoff rate, while root surface area density and root weight density were central indicators affecting sediment rate. The results indicated that an appropriate increase of sowing density has practical significance in conserving soil and water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据